Gst-Pak Binding assay

I. Make 32D lysates - Important: do the procedure quickly and follow the times noted

3x10⁶ cells per assay

- 1) Wash exponentially growing cells 3x in HBSS
- 2) Starve cells in SFM at 5-10 x 10⁶ per ml for 2 hours 30 min in 50 ml conicals
- 3) Add HEPES buffered Krebs Ringer buffer (KRB-H) and spin out cells
- 4) Repeat wash x 1 with KRB-H
- 5) Resuspend cells at 2.5×10^7 /ml in KRB-H -> 120 µl of cell suspension per sample
- 6) Do pretreatment and stimulation
- 7) Prealiquot equal volume (120 μl) of 2X Rac LB supplemented with the usual inhibitors + **10** μg of GST-Crib-Pak recombinant protein and keep on ice
- 8) At the indicated times, transfer cell suspension to tube with lysis buffer
- 9) Lyse for 10 min on ice
- 10) Spin out debris for 10 min, 4 deg.
- 11) Have ready tubes containing 10 μl of GSH sepharose (prewashed) in 90 μl of binding buffer.
- 12) Transfer supernatant to new tubes.
- 13) Transfer 180 µl of lysate to pulldown tubes. Bind for 1 hr. Save remaining lysate for protein determination (may be a problem if BSA in KRB-H) and TCL.

Krebs Ringer Buffer, HEPES buffered

<u>1X</u>	stock	MW	500 ml
20 mM HEPES	powder	238.3	2.383 g
107 mM NaCl	powder	58.44	3.127 g
5 mM KCl	powder	74.56	0.1864 g
3 mM CaCl ₂	powder	147.02	0.2205 g
1 mM MgSO ₄ .(anhydr)	powder	120.37	0.0602 g
7 mM NaHCO ₃	powder	84.01	0.2940 g
10 mM glucose	powder	180.16	0.901 g
[0.1% BSA	powder		0.5 g]
(this may interfere with protein determination)			
dH_2O			450 ml

pH to 7.4 make up to 500 ml filter sterilize

Rac Lysis buffer

2X	stock	200 n	<u>1</u>
50 mM Tris pH 7.4	1 M	10	ml
2% NP40 (w/v)	neat	4	gm
0.3 M NaCl	5 M	12	ml
20% glycerol	neat	40	ml
20 mM MgCl ₂	1 M	4	ml
[0.5% DOC		1	gm]
(new UBI protocol does not have DOC)			
dH_2O		110	ml

check pH (7.4 to 7.5), bring volume up to 200 ml [UBI Rac lysis buffer = Ras lysis buffer, somewhat different]

Binding buffer (assumes a 2:1 lysate to binding buffer ratio)

<u>1X</u>	stock	10 ml
25 mM Tris pH 7.5	1 M	0.25 ml
40 mM MgCl2	1 M	0.4 ml
1 mM DTT	1M	10 μl
dH_2O		9.35 ml

II. Making GST-Pak-Crib extracts

Buffers

HBS-E (50 ml)

<u>1X</u>	stock	amount
20 mM Hepes	0.5 M	2 ml
0.15 M NaCl	5M	1.5 ml
2 mM EDTA	0.25 M	0.4 ml
dH20		46.1 ml

HBS-E with 0.5 % NP40 (50 ml)

<u>1X</u>	stock	amount
20 mM Hepes	0.5 M	2 ml
0.15 M NaCl	5M	1.5 ml
2 mM EDTA	0.25 M	0.4 ml
0.5% NP40	10%	2.5 ml
dH20		43.6 ml

SDS-Urea sample buffer

Na phosphate	0.01 M	1.0 ml of 0.1M stock
β-ΜΕ	1%	0.1 ml of neat
SDS	1%	1.0 ml of 10% stock
Urea	8M	4.804 gm
dH_20		to 10 ml

Elution buffer

10 mM reduced glutathione in 50 mM Tris-HCl (pH 8), freshly prepared glutathione (reduced) MW 307.3

10 mM is 3.073 g/L or 3.073 mg/ml

Make a stock of 100 mM: 30.73 mg/ml, dilute 1:10 into 50 mM Tris pH 8

10 ml

Protein storage buffer

	1X	4X	stock	5 ml
Tris	25 mM pH 7.5	25 mM*	1 M	0.125 ml
glycerol	5% w/v	20 %	neat	1 g
NaCl	100 mM	400 mM	5 M	0.4 ml
DTT	0.2 mM	0.8 mM	1 M	4 μl
MgCl2	1 mM	4 mM	1 M	20 μl
DH20				3.475 ml

Growth and Induction

- 1. Streak out plate from glycerol stock
- 2. Inoculate 40 ml of LB/amp in a 250 ml flask, shake overnight
- 3. Transfer 40 ml of overnight culture into Fernbach flask containing 400 ml of LB/amp (1:10 fold dilution)
- 4. Grow with shaking at 37 deg until OD between 0.6-0.7
- 5. Add IPTG to final of 0.1 mM, a 1:1000 fold dilution from a fresh IPTG stock of 100 mM (23.83 mg/ml, filter sterilize).
- 6. Grow for 2-3 hrs with shaking.
- 7. Harvest bacteria by transferring to 200 ml bottles (x2). Spin at 6000 rpm for 20 min at 4 deg.
- 8. Decant.
- 9. Add 5 ml of PBS, resuspend and aliquot 1ml (equivalent to 80 ml of culture) to Sarstedt tubes. Add 4 more ml of PBS per tube, spin at 8000 rpm for 10 min.
- 10. Decant and freeze pellet at -80 deg.

Lysis

- 11. Thaw the equivalent of _____(80) ml of bacterial pellet
- 12. Lyse pellet in _____ (8) ml (10% of culture volume) of HBS-E.
- 13. Supplement lysis buffer with protease inhibitors (aprotinin, leupeptin, pepstatin, PMSF, DTT, benzamidine, usual concentrations). Add lysozyme to final of 0.1 mg/ml.
- 14. Incubate on ice for 15 min
- 15. Add ______ (0.42) ml of 10% NP40 to final of 0.5% . Incubate at 4 deg for 30 min (rock end-over-end).
- 16. (A) Divide into 2 x 4.5 ml aliquots for sonication with microtip. Volume limit for doublestep microtip is 5 ml. If volume is > 15-20 ml, transfer to sawed off clear conical and change to 1/2" disrupter.
 - Microtip: setting of 4, output 20.
 - Sonicate with 6 x 1 min bursts, 2 min of cooling in between. Make sure tip is at least 5 mm away from the bottom (make mark on the mcirotip); too close will drill a hole in the tube, too high lysate will foam and proteins will denature.
- 17. (B) 1/2" horn disrupter: setting of 5, output 40
 - Same sonication protocol as above.
- 18. Transfer to Oakridge tubes.
- 19. Centrifuge at 11500 rpm (Superspeed) or at 15000 rpm (Beckman) for 20 min at 4 deg (SS34 rotor for Sorvall or JA20 for Beckman)
- 20. Transfer supernatant (8.42 ml) to 15 ml conical. Keep on ice. Remove 20 μl aliquot (**Test** #**1**).
- 21. To test for efficiency of extraction, resuspend remaining pellet in 1 ml of HBS-E/NP40. Remove 20 ul to test for efficiency of extraction -keep on ice (**Test #2**).

Bulk purification with GSH sepharose followed by elution and storage

- 1. Prepare GSH beads (Pharmacia) capacity is 5 mg of GST per 1 ml of bed volume [dispense 1.33 ml of original slurry per ml of bed volume required].
 - a. For an extract estimated to have 0.1 mg/ml GST fusion protein, assuming 8 ml of extract, I calculate I need (8 ml x 0.1 mg/ml)/5*1.33 ml of beads = 0.22 ml of original slurry.
 - b. in one conical, add 0.4 ml of original slurry (0.3 ml of bed volume), try to get as much of the beads as possible (sticks to sides)
 - c. wash 2x with HBS-E/0.5% NP40 (spin in tabletop centrifuge, 4 deg at top 500 x g for 5min), aspirate off wash
- 2. Add all of the extract to beads, incubate for 1 hr at 4 deg, rocking end-over-end
- 3. Spin down and transfer supernatant to new tube (just in case)
- 4. wash GSH beads, 3 x 5 ml in HBS-E/Triton supplemented with benzamidine and PMSF. Aspirate wash.
- 5. Wash beads 1 x 5 ml in PBS/0.1% Triton. Aspirate wash, remove as completely as possible.
- 6. To the beads in the conical, elute with reduced glutathione: 1 ml of elution buffer per ml of bed volume (0.2 ml)
- 7. Mix gently to rsuspend beads. Incubate at RT for 10 min to elute the bound material from beads.
- 8. Spin at 500 x g for 5 min to sediment beads. Remove and save supernatant (containing the recombinant protein) to a new tube.
- 9. Repeat elution and spin steps twice more; total volume = 0.6 ml
- 10. Pool the 3 eluates.
- 11. Save the beads (label the construct) can be regenerated. Store at 4 deg. Take an aliquot (**Test #8**)
- 12. Load different amounts of eluate onto gel, use BSA as standard
- 13. Add protein storage buffer exact stock to depend on concentration of eluted material. Store in aliquots at -80 deg.

Rac RBD binding assay and Western blot

Binding

Continue from step 14 of pg 1

- 1) Collect agarose beads by pulsing in microfuge (30 seconds). Remove supernatant.
- 2) Wash beads 3 x with Rac LB. Remove last wash with a bent needle setup.
- 3) Resuspend beads in 25 µl of 2X Laemmli buffer (made in Rac LB)
- 4) Boil x 5 minutes. Remember total cell lysate control.
- 5) [Collect samples as for Ips (poke hole in cap with 21 G needle, then heat up 25 G needle and poke hole in the bottom of tube). Set tube on top of collection microfuge tube and the whole thing in a 50 ml collection conical. Spin for 1 min.]

According to UBI, best to load slurry because Pak may rebind Rac after boiling.

- 6) Freeze samples at -80 deg or load immediately on to gel.
- 7) Run 11% 0.75 mm gel overnight

Western Blot

- 8) Transfer 2 hrs
- 9) Dry blot, rewet and wash in 1X PBS x 15 min
- 10) Block 2 hr in 3% NFDM/PBS
- 11) wash x 1 with PBS

12) Incubate with Rac Ab at 1 μg/ml (1:1000 dilution overnight at 4 deg.	on of stock) in 3% NFDM/PBS. Rock
ml; μl of antibody	y
13) washes PBS-T (0.1% Tween) x 4, 10 min each	
14) Incubate wtih GAMγ-HRP (Zymed) at 1:5000 i	n 3% NFDM/PBS for 1.5 hr
ml; μl of antibody	ý
15) washes PBS-T x 4, 10 min each	

- 16) wash PBS x 1, 10 min
- 17) ECL (undiluted)